

Center for Technology, Innovation and Competition

Big Data and Competition Law: Lessons from Innovation Markets

Christopher S. Yoo

John H. Chestnut Professor of Law, Communication, and Computer & Information Science; Founding Director of the Center for Technology, Innovation and Competition

University of Pennsylvania

December 1,2023

CONCENTRATION OF DATA AS A POTENTIAL INDEPENDENT CONCERN FOR COMPETITION LAW

- Calls to look at concentration in data as a separate consideration
 - U.S. Draft Merger Guidelines (2023)
 - Possible monopolization claims, e.g., ongoing U.S. case vs. Google
- Insights from looking at past efforts to analyze concentration in input markets: research and development (R&D)
 - Look at the theoretical and empirical literature assessing the connection between R&D and consumer welfare
 - Examine Gilbert & Sunshine's (1995) seminal discussion of "innovation markets"
 - Analyze the limitations and critiques of their proposal
 - Assess the lessons this debate has for treating data as a separate market

GILBERT & SUNSHINE'S "INNOVATION MARKET" PROPOSAL

- Gilbert & Sunshine (1995) proposed focusing on concentration in R&D
 - Fact pattern: merger of firms that do not compete in any current or foreseeable product market but are major investors in R&D
 - Concern: merger may reduce R&D spending/inhibit unforeseen future products
- Innovation markets have not been widely used post Genzyme (2004)
 - 1992 U.S. Merger Guidelines discussed R&D only as a potential efficiency
 - 1995 and 2017 U.S. IP Licensing Guidelines recognized possible market for R&D
 - 2010 U.S. Merger Guidelines discussed R&D as a potential competitive harm
 - 2004 EU Horizontal Merger Guidelines regard mergers between innovators as a "potential special circumstance"
 - 2017 Dow-DuPont did not require connection to a concrete product market

CONCEPTUAL CHALLENGES FOR INNOVATION MARKETS

- Key concern: impact of R&D spending on dynamic efficiency
- Ambiguous relationship between scale/concentration and R&D spending
 - Theoretical and empirical literature fail to support monotonic relationship
 - Outcome depends on firm- and industry-specific factors: technological opportunity, appropriability, degree of market segmentation
- Ambiguous relationship between R&D spending and innovation
 - Potential for excessive/redundant R&D spending (e.g., patent races)
 - Potential efficiencies: scale economies, access to complementary inputs
- Similar concerns for relationship between scale/concentration and databased innovation

OPERATIONAL CHALLENGES FOR INNOVATION MARKETS: MARKET DEFINITION

- Problems of uncertainty, exacerbated by longer time frames
 - Different innovative modalities (e.g., process vs. product innovation, bus. models)
 - Innovation from unexpected sources
 - Riskiness/unpredictability of the innovative process
- Danger of treating all R&D as fungible (not everyone is a competitor)
- Proposed five-step rough guide for evaluating innovation markets
 - Key device: focus on particular product markets and specialized assets
 - Effect of limiting innovation markets to innovations in advanced stages
- Similar problems for big data (n.b. different types, alternative sources)

GILBERT & SUNSHINE'S ROUGH GUIDE FOR ANALYZING INNOVATION MARKETS IN MERGER ANALYSIS

- I. Identify the overlapping R&D activities of the merging firms
- 2. Identify alternative sources of R&D
- 3. Evaluate actual and potential competition from downstream products
- 4. Assess the increase in concentration in R&D and competitive effects on investment in R&D
- 5. Assess R&D efficiencies

STEP I: IDENTIFY THE OVERLAPPING R&D ACTIVITIES OF THE MERGING FIRMS

- Gilbert & Sunshine's analysis and caveats
 - Difficulty in determining overlap: nonsubstitutability of R&D, variation in firm capabilities, unpredictability of R&D
 - Limit to R&D that may lead to improved products or processes
 - Limit to R&D that can have a significant impact on a relevant downstream market
 - Focus on specialized/specific assets
- Commentary
 - Echo unpredictability of R&D
 - Propose limiting to products in advanced clinical trials in pharma
 - Question if must tie to product market, what is the benefit from adding innovation markets to analysis of current markets and potential competition

STEP I'S IMPLICATIONS FOR BIG DATA: DIFFICULTY DETERMINING OVERLAP

- Data for different business models
 - E-commerce: past purchase behavior to inform purchase recommendations
 - Search: past research behavior to inform relevant results
- Structured vs. unstructured data
 - Structured collected intentionally to inform a specific model (column-row)
 - Unstructured collected incidentally and used to inform emergent models (photos, social media feeds, video, sensor data), most valuable and least used
- The role of alternative dimensions in defining overlap (multipleVs)
- Lack of presence of specialized assets
- Timing for understanding relevance of different types of data

STEP 2: IDENTIFY ALTERNATIVE SOURCES OF R&D

Gilbert & Sunshine's analysis and caveats

- Parallel to market definition
- Identification of both existing and potential sources of R&D (demand- and supplyside substitution), including existing firms and new entrants
- Focus on specialized assets required to conduct R&D to establish limits
- Recognition that even if R&D requires specific assets, firms that possess them may not be identifiable

Commentary

- Difficulty in understanding future products that may compete > 2 years out
- Risk that breadth will make all R&D markets competitive

STEP 2'S IMPLICATIONS FOR BIG DATA: DIFFICULTY IDENTIFYING ALTERNATIVE SOURCES OF DATA

- Lack of specialized assets in big data
- Presence of alternative sources of supply
 - Data brokers
 - Existing industry, esp. unstructured (financial services, retail, insurance,
 - Self-provisioning (esp. because data is nonrival)
 - Wide availability of alternative sources of unstructured data
- Potential limits: impact of network effects on data collection (Android)
 - Based on oversimplified theories that posit inexhaustible returns to scale
 - Ignores features that dissipate winner-take-all dynamics: rapid growth, consumer heterogeneity, leapfrogging, large customers, multihoming, gateways

STEP 3: EVALUATE ACTUAL & POTENTIAL COMPETITION FROM DOWNSTREAM PRODUCTS

- Gilbert & Sunshine's analysis and caveats
 - Downstream competition would make reductions in R&D unprofitable
 - Potential competition in downstream markets can also exert discipline
- Commentary
 - Emphasis on competition in of downstream market means innovation market analysis may not add much to traditional antitrust

STEP 3'S IMPLICATIONS FOR BIG DATA: WHAT IS THE DOWNSTREAM MARKET?

- Online services: many are competitive (travel, e-commerce)
- Advertising
 - Online and offline ads are substitutes (Goldfarb & Tucker 2011a, 2011b; Zentner 2012; He, Lopez & Liu 2017)
 - Lack of proof of claims that different types of online ads are not substitutes (Ratliff & Rubinfeld 2011)

MARKET SHARE (REVENUE) COMPARISON: WITH AND WITHOUT OFFLINE ADVERTISING (2022)

THE ROLE OF COMPLEMENTARY INPUTS

- Variable proportions (McKenzie 1951; Vernon & Graham 1971)
 - Can respond to exclusion in one input by substituting complementary inputs
 - Substitution limits market power, but requires an inefficient input mix
- Market power in complementary inputs (Teece 1986)
 - Even inputs with complete appropriability must combine with other inputs
 - If those inputs have market power, may have problems
 - Solutions can involve long-term contracts before investing in sunk costs
- General purpose technologies (Bresnahan & Trajtenberg 1995)
 - Platforms create positive externalities for complementors
 - Solution may be to allow vertical integration to internalize more of these benefits

STEP 4: ASSESS THE INCREASE IN CONCENTRATION & THE EFFECT ON R&D INVESTMENT

- Gilbert & Sunshine's analysis and caveats
 - Acknowledgement ways that concentration can promote R&D investment
 - Greater appropriability when intellectual property protection is incomplete
 - Rent dissipation/patent races
 - Better use of investments in complementary assets, firm-specific skills, private info
 - Theory and empirics have failed to resolve Schumpeter vs. Arrow conjectures
- Commentary
 - Literature does not support presumption either way (Katz & Shelanski 2007)
 - Firm- & industry-specific factors make results "fragile" (Carlton & Gertner 2003)
 - Harm to consumers should be evaluated on facts of each case

STEP 4'S IMPLICATIONS FOR BIG DATA: AMBIGUITIES ABOUT THE IMPACT OF SCALE IN DATA

- Size of scale economies in data are unclear
 - Natural experiments show no scale economies for unstructured data (Chiou & Tucker 2017; Neuman, Whitfield & Tucker 2018)
 - Industry reports only use samples of data (Varian 2014; Bajari et al. 2018)
 - Differences between structured and unstructured data
 - Differences depending on business model
- Relevance of aspects aside from quantity to of data
 - Potential interaction with features aside from scale (recency, variety, accuracy)
 - Algorithm quality as a source of value (Brynjolfsson & McElheran 2016)

EMPIRICAL STUDY OF THE ROLE OF ALGORITHMS: BANKO & BRILL (2001)

- Size of training corpus on natural language disambiguation
- Findings
 - More data improved result quality, but may not be cost justified
 - Active learning and unsupervised learning may attain similar advantages
- All four exhibit diminishing returns
- Significance of the differences in performance depends on context

STEP 5: ASSESS R&D EFFICIENCIES

Gilbert & Sunshine's analysis and caveats

- Several sources of R&D efficiencies
 - Scale economies in R&D
 - Better use of investments in complementary assets & firm-specific skills
 - Elimination of redundant activities
- Commentary
 - Literature on optimal levels of innovation/excessive innovation
 - Difficulty proving efficiencies in conventional merger analysis

STEP 5'S IMPLICATIONS FOR BIG DATA: POSSIBILITY OF DATA EFFICIENCIES

- Feasibility of similar efficiencies
 - Scale economies (for unstructured data)
 - Better use of algorithms
 - Rationalization of redundant activities
- Other potential efficacies
 - Reduction in operating costs (run time, memory usage)

A COMMENT ON SINGLE-FIRM CONDUCT

- Antitrust holds greater concern for mergers than for unilateral conduct
 - Combinations can more easily harm competition than single-firm conduct
 - Penalizing single-firm conduct that can be procompetitive
- Extension of Gilbert & Sunshine to single-firm conduct requires even more justification

ASSESSMENT OF IMPLICATIONS OF INNOVATION MARKETS FOR DATA

- Gilbert & Sunshine shows difficulties of assessing input markets
 - Caveats and preconditions imposed by Gilbert & Sunshine themselves
 - External critiques, even by sympathetic authors
 - Importance of limiting to specialized assets tied to specific products
- Cautionary note/roadmap for treating markets for data as an independent consideration

